Approach to Mental Retardation and Developmental Delay

SR Ghaffari MSc MD PhD

Introduction

004

Objectives

- Definition of MR and DD
- Classification
- Epidemiology (prevalence, recurrence risk, ...)
- Etiology
- Importance of diagnosis

Higher Cerebral Development Dysfunction

Mental retardation

• Cerebral palsy

- Abnormal motor actions and postural mechanisms
- Non-progressive abnormalities of the developing brain
- limited, stereotypic, and uncoordinated voluntary movements

Autism

- A behaviorally defined syndrome characterized by
 - Atypical social interaction
 - Disordered verbal and nonverbal communication
 - Restricted areas of interest
 - Limited imaginative play
 - A need for sameness

Mental retardation

•Mental retardation is a serious and lifelong disability that places heavy demands on society and the health system

American Association on Mental Retardation, 1992

American Association on Intellectual and Developmental Disabilities

"mental retardation is not something you have, like blue eyes or a bad heart, nor is it something you are, like short or thin. It is not a medical disorder or a mental disorder... mental retardation reflects the "**fit** " between the capabilities of individuals and the structure and expectations of their environment. "

Definition

MR is accepted as having three components:

 Significantly abnormal intellectual performance, generally determined by a test of intelligence
 Onset during development before the age of 18
 Impairment of the ability to adapt to the environment

Global developmental delay

Reserved for children five years of age or younger

Global developmental delay

Oblassion Global developmental delay (DD) describes significant delay in two or more of the following areas:

- Cognition
- Speech/language
- Gross/fine motor skills
- Social/personal skills
- Daily living

Prevalence

• Prevalence: 1% - 3%

Mild MR occurring 7-10 times more frequently than moderate or severe MR.
Mild MR: 29.8/1000
Mod-severe MR: 3.8/1000

In Iranian population: 1.8 – 2.7%

Why diagnosis?

- Estimating the recurrence risk in future pregnancies
- Prenatal diagnosis
- Minimizing the number of diagnostic procedures
- Short-term and long-term prognosis
- Treatment options

Recurrence risk

- Variable depending on the etiology
- From very low (the same as normal population) to 50% and even in rare situations to 75 -100%
- Irrespective of etiology, empiric risk: 8.4%

Recurrence Risks for Severe MR

1	Study	Brothers	Sisters	All Sibs
	Male index case			
	<i>Herbst and Baird (1982)</i>	1 in 12	1 in 33	1 in 18
	Bundey et al. (1985)	1 in 10	1 in 20	1 in 13
	emale index case			
	<i>Herbst and Baird (1982)</i>	1 in 22	1 in 17	1 in 19

Severity:

6

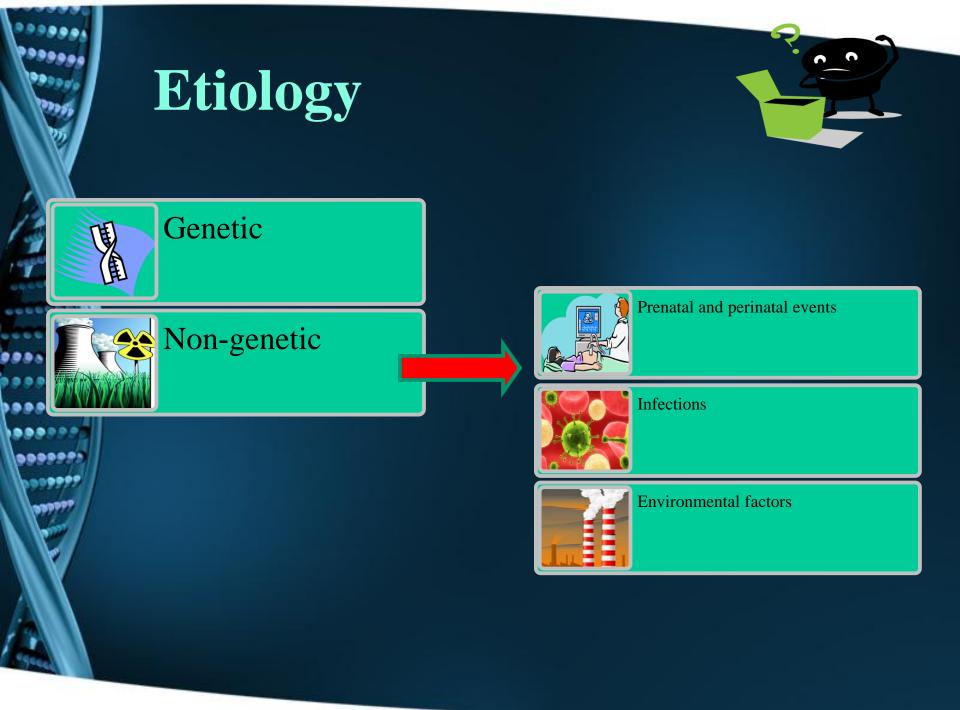
0.00

.....

Mild (IQ:50-70)•

Moderate (IQ:35-50) •

Severe (IQ : 20-35) •


Profound (IQ < 20) •

Classification

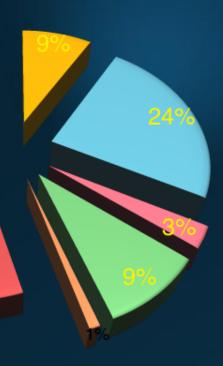
O Pedigree analysis:

Genetic causes

- Cytogenetically visible abnormalities
- Fragile-X syndrome
- Submicroscopic chromosomal abnormalities
- Single gene disorders

Second Session

Genetic Causes of Mental Retardation


Objectives

- Contribution of different genetic disorders to MR/DD
- Cytogenetically visible abnormalities
- Fragile-X syndrome
- X-liked MR/DD
- Subtelomeric rearrangements
- Common microdeletion/duplication syndromes
- Copy number variation of other genomic regions
- Inborn errors of metabolism: 1% of MR/DD patients
- De novo dominant mutations
- Autosomal recessive MR/DD

Genetic causes of sporadic MR

- Microscopic aberrations
- Submicroscopic aberrations
- Fragile-X syndrome
- X-linked MR
- Inborn errors of metabolism
- De novo dominant mutations

55%

Cytogenetically visible abnormalities

- Prevalence among MR/DD patients: 9%
- Aneuploidies
 - Trisomy (Down syndrome)
 - Monosomy
- Structural abnormalities
 Deletions
 - Duplications

Cytogenetically visible abnormalities

- Often associated with
 - Dysmorphism
 - Multiple congenital anomalies
 - Prenatal onset
 - IUGR
 - Abnormal ultrasound findings

Fragile-X syndrome

- The most common cause of inherited MR/DD
- Prevalence: 1/4000 (males)
- Prevalence among MR/DD patients: 3-5%
- Both males and females are affected

Fragile-X syndrome

- Major clinical features
 - Speech delay
 - Dysmorphic features
 - Long face
 - Large ears
 - Macrocephaly
 - Psychologic disorders
 - Autism
 - Behavioral disorders
 - Macro-orchidism

Submicroscopic chromosomal abnormalities

- Subtelomeric rearrangements
- Common microdeletion/duplication syndromes
- Copy number variation of other genomic regions

Submicroscopic Cromosomal Abnormalities

E

Subtelomeric Rearrangements 0.5-15% • Unselected patients: 5% •

Common Microdeletion and Microduplication (CMMSs) Syndromes 5.8-9.5% •

Genomic Copy Number Variations (CNVs) 10-17% •

Subtelomeric rearrangements

- Prevalence among MR/DD patients:
 - 0.5-15%
 - Unselected patients: 5%
- Major clinical features
 - Prenatal onset growth retardation
 - Multiple congenital anomalies
 - Dysmorphism
 - Moderate to severe MR

Common microdeletion/duplication syndromes (CMMSs)

- Prevalence among MR/DD patients: 5.8-9.5%
- CMMSs: 50% of total interstitial Microdeletion and Microduplication syndromes
- Overlapping clinical features

Microdeletion syndromes

Microdeletion Syndromes

- DiGeorge syndrome
 Williams-Beuren
 - syndrome
- Prader-Willi syndrome
- Angelman syndrome
- Miller-Dieker syndrome

- Smith-Magenis syndrome
- Wolf-Hirschhorn syndrome
- Cri du Chat syndrome
- Langer-Giedion syndrome
- DiGeorge Syndrome 2

OVERALL – occurs 1/1600 deliveries

Genomic copy number variations

• Prevalence among MR/DD patients: 10-17%

Single gene disorders

- Inborn errors of metabolism: 1% of MR/DD patients
- X-liked MR/DD: 9-10%
- De novo dominant mutations
 - Recently proposed
 - Estimated prevalence: 50-60%
- Autosomal recessive MR/DD
 - Mostly in familial MR/DD

Autosomal dominant single gene disorders

•2009-2011, Hamdan et al.

Investigation of 197 synaptic genes (glutamate receptor, ...) in
 95 patients: 11 new mutations found

•2011, *Nature*, Vissere et al.

- Exome sequencing of 10 patients with sporadic MR: 6 pathogenic mutations found (60%)
- More than all of the previous investigations

New paradigm of de novo dominant mutations in MR

Familial MR/DD

Genetic causes of familial MR/DD

Low contribution of chromosomal abnormalities Single gene disorders: Fragile X syndrome
Other X-linked disorders
Autosomal recessive MR/DD
Autosomal dominant MR/DD

Diagnostic Methods

Karyotype Assessment of fragile-X syndrome **FISH MLPA** Array-based techniques Array-CGH **O** SNP Array Exome sequencing Next-generation sequencing

Third Session

Diagnostic Techniques

Objectives

- Advantages and disadvantages of different diagnostic techniques
 - Karyotype
 - PCR screening of Fragile-X syndrome
 - FISH
 - MLPA
 - Array based techniques
 - Next generation sequencing
 - Exome sequencing

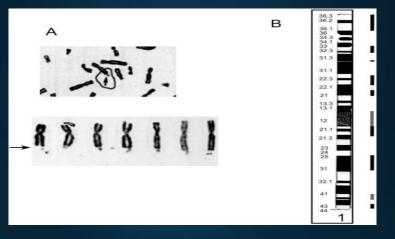
Karyotype

• The first technique for studyi abnormalities

- Diagnostic yield: 9%
- Advantages:
 - · Genomic
 - Detection of balanced abnormalities
- · Disadvantages:
 - Low resolution (3-5 Mb)
 - · Labor intensive

/1					Leica Chantal Provide Todo		
	e G	(K	8	7 8	18	11	12
	13	14	15		16	17	18
	19	anta di Gevie	w Mode	21	22	Change Rrev	∙iew Mode ¥

Fragile-X syndrome


- · Cytogenetic studies:
 - Replaced by molecular studies

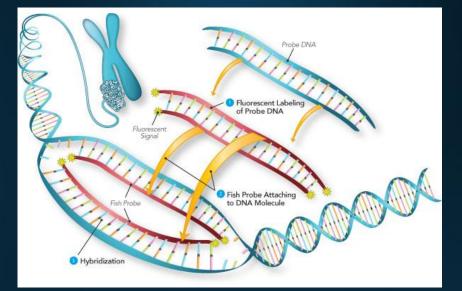
· PCR screening:

Determining CGG repeat expansion of FMR1 gene

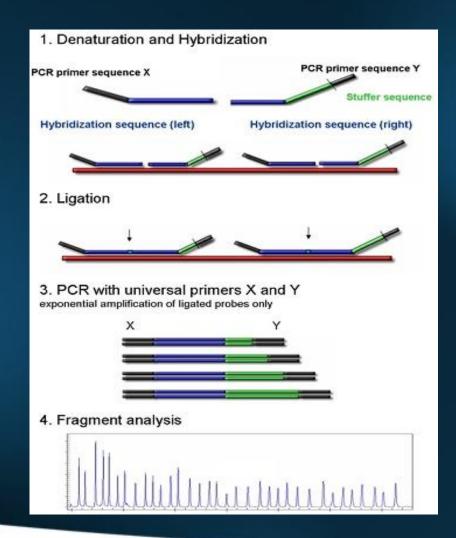
• Triplet-primed PCR:

- Determining pre-mutations and full mutations
- · Diagnostic yield: 3-5%

Diagnostic techniques of subtelomeric aberrations


– FISH

- Costly
- Labor intensive
- MLPA
- Array-CGH
 - costly


FISH

- The first molecular cytogenetic technique
- Advantages:
 Higher resolution
- Disadvantages:
 Limited tergets
 You must know what you are looking for

MLPA

Diagnostic techniques of CMMSs

• In the past:

- "Phenotype -first approach"
- One genetic test (FISH) for one syndrome
- Screening was not feasible

• At present:

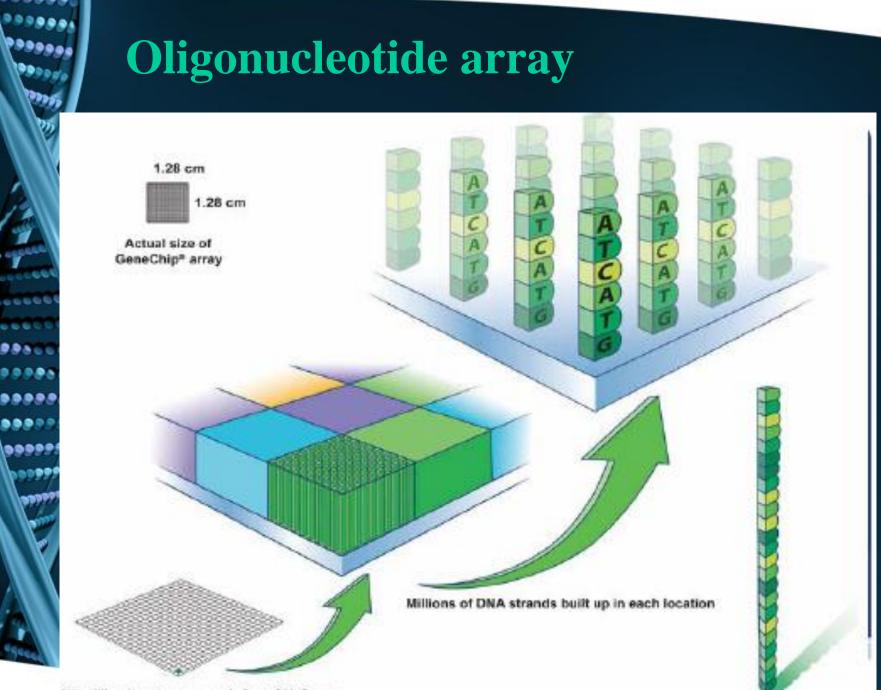
- "Genotype -first approach"
- One genetic test for all of the known and even unknown syndromes
 - MLPA
 - Array-based techniques
- Screening rather than targeted diagnosis

Other genomic CNVs

- Prevalence: 10-17%
- Diagnosis: array-based techniques

• First tier test for:

- Developmental delay/intellectual disability (DD/ID)
- Multiple congenital anomalies (MCA)
- Autistic spectrum disorder (ASD)

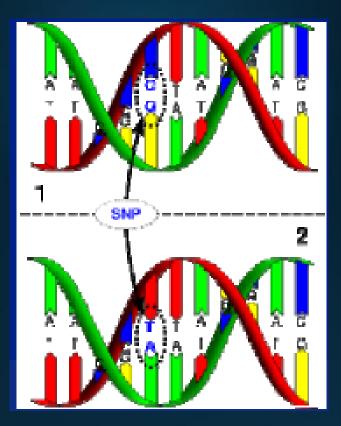


Platforms

- Selected probes:
 - Targeted CMA
 - Whole genome CMA

• Resolution:

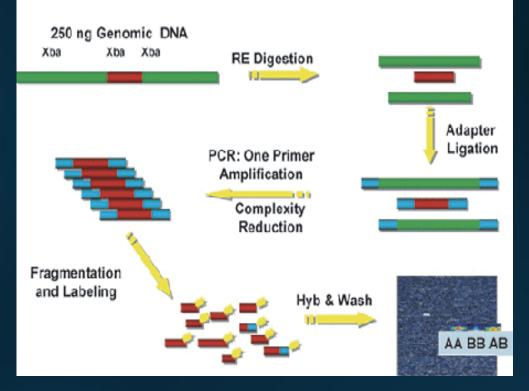
- BAC array (probe size: 75-150 Kb)
- Oligonucleotide array: (50-60 bp)
 - SNP array
 - Non-SNP array



6.5 million locations on each GeneChip® array

SNP array

SNP ARRAYS A Single nucleotide polymorphism is a DNA sequence variation occurring when a single nucleotide in the genome differs between members of a species (or between paired chromosomes in an individual).

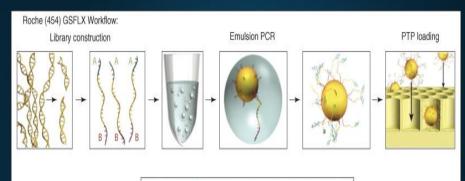


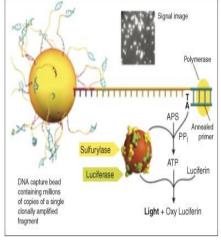
SNP array

Advantages:

- Very high resolution (>100000 probes)
- Detection of LOH

Genotyping Mapping Assay Overview




Next-generation sequencing Exome sequencing

Promising technique in detecting novel genetic changes (CNVs, single gene disorders)

Technique of choice in near future

000

Pyrosequencing reaction

TRENDS in Genetics

Forth Session

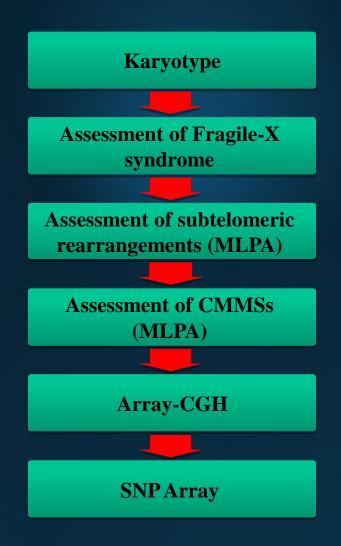
Diagnostic Approach to MR/DD

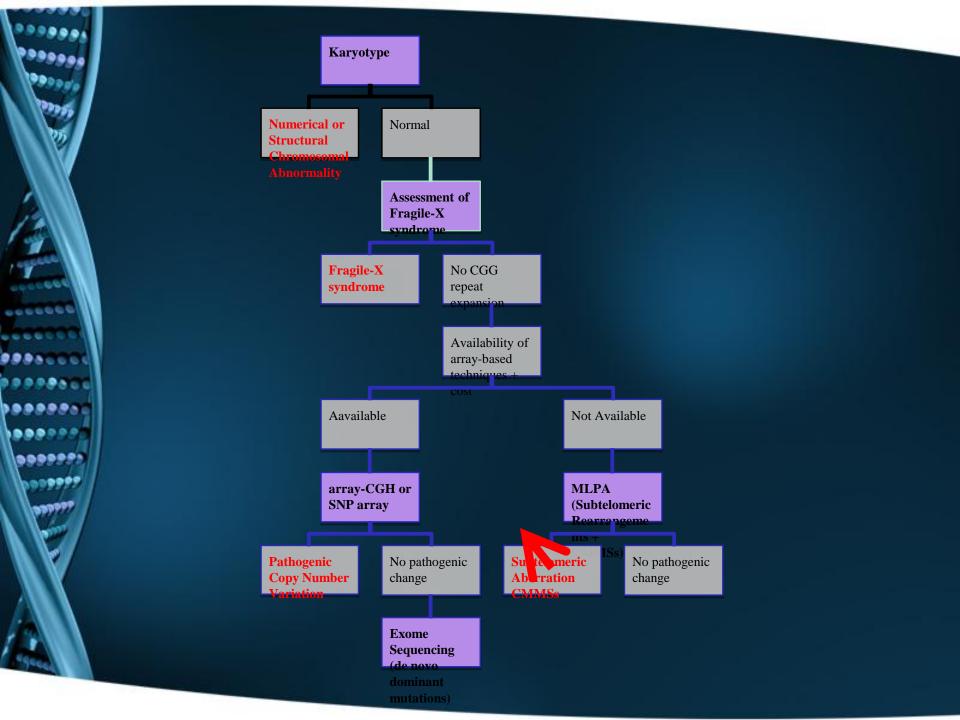
Objectives

- Different steps of any proposed diagnostic approach
- Limitations of each diagnostic approach
- How to select an appropriate diagnostic approach

Diagnostic approach to sporadic MR

- Guidelines based on the assessment of
 - 1. Chromosomal abnormalities
 - Microscopic
 - Submicroscopic
 - 2. Fragile-X syndrome


Diagnostic approach to sporadic MR


1. Karyotype

- 2. Assessment of Fragile-X syndrome
- 3. Assessment of DNA copy number differences (Array-CGH, MLPA, ...)

Stepwise approach to sporadic MR

- Guidelines based on the assessment of
 - 1. Chromosomal abnormalities
 - Microscopic
 - Submicroscopic
 - 2. Fragile-X syndrome

Diagnostic approach to familial MR/DD

Low contribution of chromosomal abnormalities to "Familial" MR

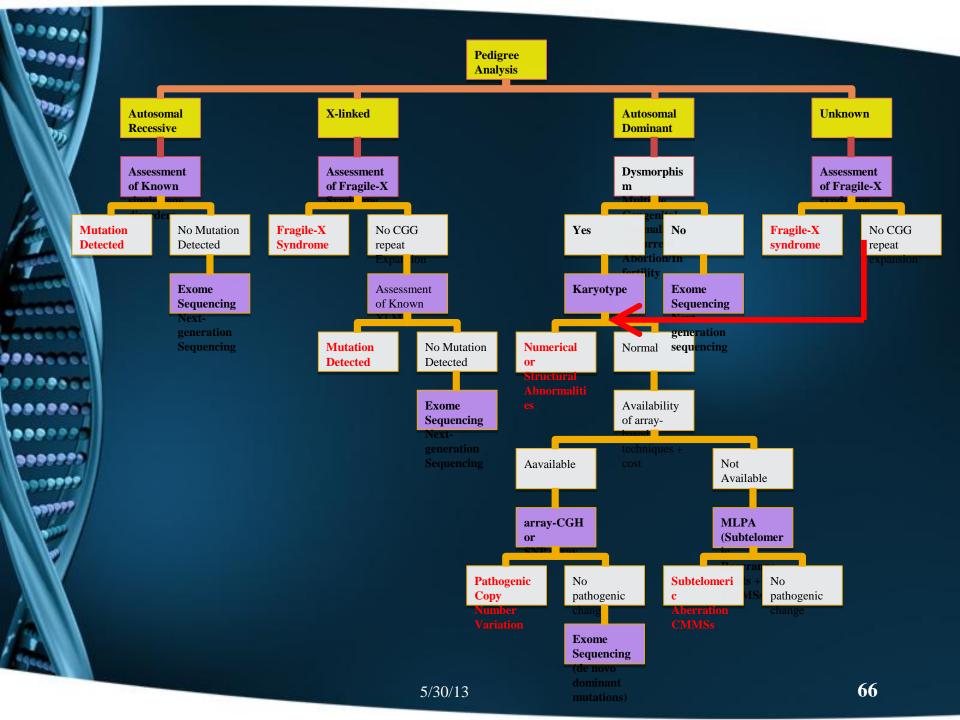
High contribution of single gene disorders

Familial MR/DD

An extremely heterogenous disorder More than 10000 genes involved

New genomic approach DExome sequencing

Diagnostic Algorithms


Diagnostic approach

Pedigree analysis The presence of dysmorphism and/or multiple congenital anomalies

Diagnostic approach

Familial MR/DD with dysmorphism and/or MCA: The same as sporadic MR/DD

Familial MR/DD without dysmorphism and/or MCA: Focusing on single gene disorders

Conclusion

Genetic Counseling Issues

با تشكر از توجه شما